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There have been several theoret ical  investigations [1, 2] in which 
the electr ical  and enthalpy characteristics of a cylindrical arc have 
been obtained. In the investigation of e lect r ic-arc  heating, the gas- 
dynamic  characteristics are required as well. 

Below we investigate the e lec t r ic-arc  heating of gas in a round 
tube for the case in which the local  enthalpy and specific flow rate of 

the gas are independent of the longitudinal coordinate (stabilized 
e lec t r ic-arc  heating).  We give relationships for the numerical  deter-  
minat ion of the electr ical  and enthalpy characteristics by the method 
of successive approximations,  and also relationships for the subsequent 
determinat ion of the gasdynamic characteristics.  The results are 
given of calculat ions for air at pressure of l -1O0 atmospheres ( 1 
arm = t .  01325. t0 ~ N / m  z) and a temperature  of 6000 ~ K on the 

column axis. 
1. We consider a laminar  flow of gas in a cylindrical tube of 

round cross section in the presence of the positive column of an e lec-  
tric arc for the case in which the local  enthalpy h and the specific 
flow rate OVz are independent of the longitudinal coordinate z. (This 
case was mentioned in [a ] ,  but ~here was a misprint  - p ,v  z instead 
of pVz). Radiation is ignored. Then the functions 

"F ---- ~ rdr,  ~) ~ pv z hrdr 

o o 

are independent of z. The pressure along the tube falls and, hence, 
the temperature  T and the function 

T 

s : ~ ~,dT 

o 
(k is the thermalconduct iv i ty )wi l l  vary slightly with z, but in prac-  
t ice they can be regarded as constant. Owing to the possible variation 
of Vz along the tube, the function 

A =  i Pvz~rdr 
o 

will also depend on z. 

For this case the approximate  momen tum and energy equations 
given in [3] take the form 

r 

Ov z r z dp OA r - ~ - : - - E  ~ ~ r d r .  
F~r Or - -  2 dz @ Oz ' 

o 

The boundary conditions are 

v z = O, h =  h w = const when r =  r w.  

(i.i) 

(i. 2) 
The subscript w indicates the parameters  on the wall. 
In view of thermochemica l  equil ibrium we regard the quantit ies 

p, h, k ,  g ,  and o as known functions of temperature  and pressure. 
In conjunction with Eqs. (1.1) we must  consider the expressions 

for the tota l  current in the tube and the gas flow rate, respectively,  

r d r ~  

I = 2 h E  ~ ~ rdr, G = 2~  ~ pv z rdr .  (1. 3) 
0 0 

The subscript d indicates the boundary of the conducting region. 
For the conducting region (O ~ r <- rd) the energy equation (1.1) 
is represented in integral  form: 

, ~o(Erw)~ s 
s ~ = Sd ~ j -  ~ [F~ (~ld) -- Fo. (~q)], s ~ = .--~-, Z ~ = --~- 

i i L (1"4) F~. 01) : F~ 01) d~ F~ 01) = ~0 ~ld~l, ~1 = r~ 
~1 o 

The subscript 0 corresponds to the value ~ = 0. 
When ~7= 0 i t  follows from Eq. (1.4) that 

E r w  : \ r (~ld) ] " (i. 5) 

From Eq. (i. 3), using (i. 5), we obtain 

t / (So--sd) ~ (1.0) 
rw = 2zfF1 Old) \~o ] %  F~ (Tld) " 

The energy equation ( 1 . 1 ) f o r  the nonconducting region 
(r d ! r -~ rw) is brought by means of (1 .2)  and (1.3) to the form 

s ~ = Sw ~ - -  E 1  ln~/2~so. (1.7)  

Hence, when ~ = 7/d, we obtain 

~ld = exp [ - -  2~ (s a - -  sw) /E l ]  , (1.8) 

where, according to Eqs. (1.5)  and (1.6),  

E I  = 2z~ (so - -  Sd) F~ (Ha) 
F~ 01d) (1.9) 

Corresponding to s d there is a particular temperature T d at which 
the electzieat conductivity o is practically zero, so that the contri-  
bution to I from the region Td - T ~ Tw is negligibly small .  For 
air we take T d = 4000 ~ K. 

Assigning values of To, Tw, and p for the particular gas, we can 
use ( 1 . 4 ) - ( 1 . 9 )  to determine numerical ly ,  by the method of succes- 
sive approximations,  the distributions s ~ = s~ 7, p) and the values 

of Er w, I / r  w, EI, and ~7 d. After this it is easy to find the enthalpy 
(h ~ = h / h  0 ) or temperature  (T ~ = T/T0) characteristic.  

2. For an approximate  determinat ion of the velocity profile and 
other gasdynamic characteristics in the case of stabilized electr ic-  

arc heating we will assume that the ratio of the pressure: to the veloc 
ity head on the axis is faixiy large. Then, as will be explained later, 
we can ignore the second term on the right side of Eq. (1.1).  

We write Eq. (1.1) in dimensionless form, 

0vz ~ ~1 1 t 0A rw2 d p  

0~1 - - ~ - k  I~OVzo t~o~l O z '  a--2lXo%0 d z '  

vz ~ ~  ~ (2. i) 
Vz~ - -  Vzo ' ~0 " 

After formal  integration of Eq. (2.1) with respect to ~ with ful-  
f i lment  of the boundary condition v z (0) = 1 we obtain 

r J  Po dvzo 
vz ~ = I -t- aF3 (~1) + ~F~ (*1), ~ = lxo dz ' 

. , ~rld~l ~" E 4 ( t l ) d .  q 
F 

0 0 

n 

f (2.2) 
p 

F4 (~1) = P~ (Vz~ ~ld'q' P~ - -  o0 " 
o 

We neglect  the variation of the integrals Fa and F~ with z (this 
will be justified late D. We assume that p0Vz0 = const. When ~ = 1 
we have v~ = 0, and Eq. (2.2) gives 

I + ~ Fs (i) + ~ F5 (l) = 0. (2. a) 

Neglecting the temperature  variation, we can regard the density 
as proportional to the pressure, since the molecular  weight of the gas 
does not depend greatly on the pressure. Hence, 

Pol/Po = Vzo/UzOl = t / P  ~ pO = p / p ~ .  (2.4) 

Using (2.4),  we get Eq, (2.3) in the form 

krp~ ~ - -  dp~ ~ q-  4koz ~ = 0 , 

prFa (1) t 
k l - -2pozVPzo t j . 5 ( l )  , k 2 - -  R F s ( t )  ' 

R = 2rwp~176 z ~ = ~ (2..5) 
Vol 2r w " 
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Table 1 

lO-~p/t.ot325, N / m  ~ 5 10 20 50 too 

Initial Values 

Final Values 

8 o 

~o 

8 d 

%, 

Ergo 

I / r  w 

tO-~EI  

E r  w 

I / r  w 

10 -z E I  

i 2 

2554 2275 

120.2 103.5 

0.3560 0.3800~ 

0.0004 0.01051 

20.2 2t.2 

458 375 l 
9.25 7.96 

0.548 0.518 

t5.9 t7.6 

732 538 

tl.62 9.80 

0.6t8 0.567 

2032 

85.t t  

0.392[ 

0.01i~ 

22.8 

305 

6.95 

0.500 

20.3 

380 

7.71 

0.533 

t893 

73.28 

0.3930 

0.0t27 

24.1 

269 

6.48 

0.498 

22.9 

298 

6.90 

0.5t8 

1787 

57.54 

0.3890 

0.0t3~ 

25.6 

237 

6.11 

0.502 

25.7 

243 

6.30 

0.5t0 

t674 

46.77 

0.3827 

0.0143 

27.9 

207 

5.76 

0.5tl  

29.9 

t90 

5.78 

0.5ti  

t598 

36.73 

0.3810 

0.0150 

30.0 

t89 

5.62 

0.519 

33.5 

~65 

5.55 

0.5t7 

The values of a and B, in view of (2.5), will be 

k~ (p~ t 
a=--[ki(pO)~__llYs(1) , B= Vk~1{pO)2__l] Fs(1) .(2.6) 

The values of Fs(1) and Fs(1 ) are of the same order. In particular, 
when p* =/1 ~ = 1 we will have dA/dz = 0 and then we will obtain a 

N k \ x :; X• 
"%\ 

Poiseuille flow, for which, as is known [4], dp/dz = const and v~ = 

= 1 - ~ .  
In this case Fs(1)/F~(1) ~ 3.3. 
It is clear from (2.6) that at sufficiently large k~ we can actually 

ignore the terms in Eqs. (1) and (2.1)-(2.3)  which are due to the 

longitudinal velocity gradient. 
We can estimate the variation of the pressure with z by integrating 

Eq. (2.5) .  We can either completely discard the second term, or re- 
place In p~ by -(1 - p~ In the latter case we obtain 

p~ ] { 1 + k i ( k , - - Z - - 8 k ~ ~  k f  ~ .  (2.7) 

Hence, it is clear that at sufficiently large k~ and relatively small 
z ~ the pressure along the tube will not decrease significantly. In con- 

sequence of (2.4) the axial velocity will also increase insignificantly. 
This, together with the previously mentioned smallness of the longi- 
tudinal variation of the pressure, justifies the assumption made in the 
derivation of Eq. (2.2) that the integrals Fs and F~ are independent of z. 

On substituting the values of vz from (2.2) in Eq. (1.3) we obtain 

,~ = F~ O) + = F5 (t) + ~ F0 (1), 

1 1 

G =iP~ Fr T = 2~po Vzo r ~  ' FG (t) ( t ) =  I P~ (q) ~ld~l' 
o o 

i 

Fs (I) ---- l p ~  (~) ~d~. 
0 

(2.8) 

Since on the basis of (2.2) 

% = - -  ~w (OvJOr)w = - -  JxoV~o r,~-a [a + ~F4 (91 , 

then the friction drag coefficient 

2 _ _  = 8~/poV~o - -  - -  8~o [~ + ftF4 (l)]/rwpoVzo. 

In view of (2.8), we obtain 

6 = - -?  [a -}- ~F 4 (i)] (8 = Grdt6~rwlxOl ). (2.9) 

The start of stabilized electric-arc heating, i . e . ,  the case p~ = 1, 
is of greatest interest. In such a case, on the basis of (2.6) 

= --kd (kl --  t)F3(t), B = t/(kl --  t)1% (t) .  (2.1O) 

At large k~ the values of a ,  Y, 6 will be given by the formulas 

t Fa(i) F0 (l) - -  Fv (t) 6==---eL T. (2.11) 
~-- F a ( l ) '  ~ Fa(l) ' 

A common characteristic of electric-arc heating is the mean 
bulk enthalpy. Proceeding from the expression 

o 0 

we arrive at the following formula for <h~ = <h>/ho: 
1 

1 
l p~176  ~ ~ld~l (2.12) <h~ = T 
0 

3. In application to a particular case we consider the assumption 

pvz= eonst �9 (3. i) 

It follows from Eq. (1.3) that 7 = 1/2. In view of (3.1) and the 
fact that the value of Pw is bounded, the condition vz*(1) = 0 will 
not satisfied; instead, according to (8.1), we obtain 

v~ ~ (1) = Vpw ~ 

Hence, the right side of the equation, similar to(2.3) ,  will be 

equal t o  1 / p ~ .  
At large k 1 the terms with ~ can be neglected and then 

= - -  (p o - -  t )  / p C  F s  ( 9 ,  6 = - - % ~ .  

In this case the mean bulk enthalpy can be expressed on the basis 

of (2.12). 
1 

<h~ = 2 ~ h ~ rldrl �9 (3.2) 
0 

4. We carried out calculations for air with an axial temperature 
of 6000 ~ K and pressures 1-100 atmospheres. We used known data 
for the temperature and pressure dependences of the thermal con- 
ductivity and viscosity [5], the electrical conductivity [6], and the 
enthalpy and density [7]. 

As an initial approximation for o we took the approximating 
expression o * = 1 - 6(ND]d) z + 8(~/Nd)a - 8(~/rld) 4, which sat- 

isfied the conditions 

o ~  o ~  

(da~ = (d&/d~l)~_~a = (d2a~ = O . 

This approximation enable us to determine the functions F 1 (D 
and Fz (~) in final form, to calculate the characteristics Er w, I/rw, 



J O U R N A L  OF APPLIED M E C H A N I C S  A N D  T E C H N I C A L  P H Y S I C S  91 

Table 2 

I0-~p/l.013~, N/m I I 2 5 io 20 50 too 

First approx- --ct 

imat ion (B = 0) 

Second approx- - - a  

imat ion 

<h~ 
pV z = cons~ - -~  

= o <~o) 

t-202 
0.537 
0,647 
i.320 
0.27t 
0.554 
0.680 
0.475 
t.085 
0.542 
0.466 

t . t60  
0.539 
0.655 
1.t84 
0.059 
0.575 
0.665 
0.446 
t . 0 ~  
0.52t 
0.425 

t . t16  
0.594 
0.659 
1.120 
0.009 
0.596 
0.664 
0.420 
0.998 
0.499 
0 .4 t t  

1.086 
0.609 
0.660 
t.086 
0.002 
0.609 
0.661 
0.4t3 
0.97t 
0.486 
0.399 

1.066 
0.6t8 
0.660 
1.066 
0.000 
0.618 
0.660 
0.4t0 
0.953 
0.476 
0.395 

t.055 
0.626 
0.660 
1 +055 
0.000 
0.626 
0.660 
0.409 
0.941 
0.470 
0.394 

1.050 
0.629 
0.660 
t .  050 
0.000 
0. 629 
0.660 
0..408 
0. 935 
0.468 
O. 394 

El, Nd, and s ~ in an in i t ia l  approximation from formulas (1.5), (1.6), 

(1.9), (1.8), and (1.4) and to determine o ~ = o~ ~ in a first approx- 

imation.  We then carried out a numerical  calculat ion of these func- 
tions and characteristics in a first approximation. In a similar way 

we found higher-order approximations. The distribution s ~ = s"(% p) 

for the nonconducting region was calculated from formula (1.7). 
Table 1 gives some of the data required for the calculations. 

Calculations of the indicated characteristics show that it is suf- 

f icient  to take the second approximation. In the calculations, how- 

ever, approximations to the fourth order were made. The in i t ia l  and 
final values of Er w, I/rw, gI, and ~Jd are shown in Table 1. Figure 1 
shows the enthalpy profiles h ~ = h~ p) found from the distributions 
s ~ = s~ 

We obtained corresponding distributions p"= p~ p), ,u ~ = p~ p) 

which enabled us to determined numerical ly the functions Fs(% p), 

F6(~, p), and Fj(~, p), and to ca lcu la te  the gasdynamic characteristics 

a ,  },, and 5 in a first approximation (13 = 0) from formulas (2.11). 

We also determined the velocity profiles v z = v~ ( ~, p) from formula 

(2.2)(13= 0). The values of a ,  y, and5 are given in T a b l e 2 .  We 

found that the velocity profile is independent of the pressure to an 
accuracy of two to three dec imal  places.  Figure 1 shows v z as a 
function of 7/. 

The obtained values of y show that at constant flow rate G and 

radius rw the product P0yz0 decreases slightly with pressure increase. 
Since the density is almost proportional to the pressure, the velocity 

Vz0 will  decrease rapidly, and the coefficient kt will increase rapidly, 
with pressure increase. Thus when G = const and r w = const, g will 

presumably approach zero rapidly with pressure increase; this is 
confirmed by calcula t ion (Table 2). 

We next calculated the functions F402, p) and Fs(+, p) and the 

parameters a ,  5, y, and 5 in a second approximation from formulas 

(2.10), (2.8), and (2.9). The results are also given in Table 2. 

Although when G = const and r w = const the value of poVz0 de- 

creases slightly with pressure increase (in the considered pressure 
range the decrease does not exceed 12%), we assumed in the ca l -  

culations of the coefficients k t that p0Vzo = const = 21.59. This 

value is obtained when To = 6000 ~ K, p = 1.01325.10 s N/mZ, Vz0 = 

= 482 m/sec  (which corresponds to M 0 = 0.3, at which the kinet ic  

energy can st i l l  be neglected in comparison with the enthalpy). 

A comparison of the results of calculat ion in the first and second 

approximations shows that for the considered conditions the effect 

of the variation of Vz0 with z is insignificant and is pract ical ly  absent 

at pressures p>- 2 .1 .01325.  l0  s N/m 2" Since for the first two pressures 

in Table 2 the values of a in the second approximation are larger, 

the corresponding velocity profiles v z = v z (~, p) (with 1~ taken into 

account) are practical ly the same as the profiles obtained in the first 

approximation (~ = 0). For comparison Table 2 gives the values of 

a and ~ (B = 0) on the assumption that  p Vz= const~ As we observed, 

in this case y = 0.5, irrespective of the pressure. These values of 

a ,  ?, 6 differ from the values in the first approximation by 9 . 7 -  

-10 .9%,  6 .9 -20 .5%,  and 15 .2 -29 .0%,  respectively, and the dif- 
ference increases with pressure increase. Table 2 also gives the values 

of the dimensionless mass mean enthatpy <h~ calcula ted from 

formulas (2.12) and (3.2). The difference between corresponding 

values is 1 . 9 - 4 . 8 % .  
In conclusion we evaluate the changes in pressure for r w = 0. 001 m, 

p~ = 1.01328- 10SN/mZ, and T o = 6000 ~ K. In this case k s = i 1 . 2  

and kz = 0. 00985. Calculation from formula (2.7) with z ~ = 5 gives 

p~ = 0. 985. 
The author thanks M. P. Levin for assistance in the calculations. 
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