CALCULATION OF THE CHARACTERISITICS OF ELECTRIC-ARC HEATING OF A GAS

I. I. Suksov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 8, No. 4, pp. 132-136, 1967

There have been several theoretical investigations $[1,2]$ in which the electrical and enthalpy characteristics of a cylindrical arc have been obtained. In the investigation of electric-arc heating, the gasdynamic characteristics are required as well.

Below we investigate the electric-arc heating of gas in a round tube for the case in which the local enthalpy and specific flow rate of the gas are independent of the longitudinal coordinate (stabilized electric-arc heating). We give relationships for the numerical determination of the electrical and enthalpy characteristics by the method of successive approximations, and also relationships for the subsequent determination of the gasdynamic characteristics. The results are given of calculations for air at pressure of $1-100$ atmospheres (1 atm $=1.01325 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$) and a temperature of $6000^{\circ} \mathrm{K}$ on the column axis.

1. We consider a laminar flow of gas in a cylindrical tube of round cross section in the presence of the positive column of an electric arc for the case in which the local enthalpy h and the specific flow rate ρv_{z} are independent of the longitudinal coordinate z. (This case was mentioned in [3], but there was a misprint - ρ, v_{Z} instead of ρv_{z}). Radiation is ignored. Then the functions

$$
\Psi=\int_{0}^{r} \rho v_{z} r d r, \quad \Phi=\int_{0}^{r} \rho v_{z} h r d r
$$

are independent of z. The pressure along the tube falls and, hence, the temperature T and the function

$$
s=\int_{0}^{T} \lambda d T
$$

(λ is the thermal conductivity) will vary slightly with z, but in praciice they can be regarded as constant. Owing to the possible variation of v_{z} along the tube, the function

$$
\Lambda=\int_{0}^{r} \rho v_{z}^{2} r d r
$$

will also depend on z.
For this case the approximate momentum and energy equations given in [3] take the form

$$
\mu r \frac{\partial v_{z}}{\partial r}=\frac{r^{2}}{2} \frac{d p}{d z}+\frac{\partial \Lambda}{\partial z}, \quad r \frac{\partial s}{\partial r}=-E^{2} \int_{0}^{r} \sigma r d r
$$

The boundary conditions are

$$
\begin{equation*}
v_{z}=0, \quad h=h_{w}=\text { const } \quad \text { when } r=r_{w} \tag{1.2}
\end{equation*}
$$

The subscript w indicates the parameters on the wall.
In view of thermochemical equilibrium we regard the quantities ρ, h, λ, μ, and σ as known functions of temperature and pressure.

In conjunction with Eqs. (1.1) we must consider the expressions for the total current in the tube and the gas flow rate, respectively,

$$
\begin{equation*}
I=2 \pi E \int_{0}^{r_{d}} \sigma r d r, \quad G=2 \pi \int_{0}^{r_{w}} \rho v_{z} r d r \tag{1.3}
\end{equation*}
$$

The subscript d indicates the boundary of the conducting region. For the conducting region ($0 \leq \mathrm{r} \leq \mathrm{r}_{\mathrm{d}}$) the energy equation (1.1) is represented in integral form:

$$
\begin{aligned}
& s^{\circ}=s_{d}{ }^{\circ}+\frac{\sigma_{0}\left(E r_{w}\right)^{2}}{S_{0}}\left[F_{2}\left(\eta_{d}\right)-F_{2}(\eta)\right], s^{o}=\frac{s}{s_{0}}, \sigma^{0}=\frac{\sigma}{\sigma_{0}} \\
& F_{\mathbf{2}}(\eta)=\int_{0}^{n} \frac{F_{1}(\eta) d \eta}{\eta}, \quad F_{1}(\eta)=\int_{0}^{\eta} \sigma_{0} \eta d \eta, \quad \eta=\frac{r}{r_{w}} .(1.4)
\end{aligned}
$$

The subscript 0 corresponds to the value $\eta=0$.
When $\eta=0$ it follows from Eq. (1.4) that

$$
\begin{equation*}
E r_{w}=\left(\frac{s_{0}-s_{d}}{\sigma_{0} F_{2}\left(\eta_{d}\right)}\right)^{1 / 2} \tag{1.5}
\end{equation*}
$$

From Eq. (1.3), using (1.5), we obtain

$$
\begin{equation*}
\frac{I}{r_{w}}=2 \pi F_{1}\left(\eta_{d}\right)\left(\frac{\sigma_{0}\left(s_{0}-s_{d}\right)}{F_{2}\left(\eta_{d}\right)}\right)^{1 / 2} . \tag{1.6}
\end{equation*}
$$

The energy equation (1.1) for the nonconducting region ($r_{d} \leq r \leq r_{W}$) is brought by means of (1.2) and (1.3) to the form

$$
\begin{equation*}
s^{a}=s_{w}{ }^{\circ}-E I \ln \eta / 2 \pi_{0} \tag{1.7}
\end{equation*}
$$

Hence, when $\eta=\eta_{\mathrm{d}}$, we obtain

$$
\begin{equation*}
\eta_{d}=\exp \left[-2 \pi\left(s_{d}-s_{w}\right) / E I\right] \tag{1.8}
\end{equation*}
$$

where, according to Eqs. (1.5) and (1.6),

$$
\begin{equation*}
E I=\frac{2 \pi\left(s_{g}-s_{d}\right) F_{1}\left(\eta_{d}\right)}{F_{2}\left(\eta_{d}\right)} \tag{1.9}
\end{equation*}
$$

Corresponding to s_{d} there is a particular temperature T_{d} at which the electrical conductivity o is practically zero, so that the contribution to 1 from the region $\mathrm{T}_{\mathrm{d}} \geq \mathrm{T} \geq \mathrm{T}_{\mathrm{w}}$ is negligibly small. For air we take $\mathrm{T}_{\mathrm{d}}=4000^{\circ} \mathrm{K}$.

Assigning values of T_{0}, T_{W}, and p for the particular gas, we can use (1.4)-(1.9) to determine numerically, by the method of successive approximations, the distributions $s^{\circ}=s^{\circ}(\eta, p)$ and the values of $E r_{W}, I / r_{W}$, EI, and η_{d}. After this it is easy to find the enthalpy ($h^{\circ}=h / h_{0}$) or temperature ($T^{\circ}=T / T_{0}$) characteriscic.
2. For an approximate determination of the velocity profile and other gasdynamic characteristics in the case of stabilized electricarc heating we will assume that the ratio of the pressure to the veloc ity head on the axis is fairly large. Then, as will be explained later, we can ignore the second term on the right side of Eq. (1.1).

We write Eq. (1.1) in dimensionless form,

$$
\begin{gather*}
\frac{\partial v_{z}^{\circ}}{\partial \eta}=\alpha \frac{\eta}{\mu^{\circ}}+\frac{1}{\mu_{0} v_{z 0}} \frac{1}{\mu_{0}^{\circ} \eta} \frac{\partial \Lambda}{\partial z}, \quad \alpha=\frac{r_{z o}^{2}}{2 \mu_{0} v_{z 0}} \frac{d p}{d z} \\
v_{z}^{\circ}=\frac{v_{z}}{v_{z 0}}, \quad \mu^{\circ}=\frac{\mu}{\mu_{0}} \tag{2.1}
\end{gather*}
$$

After formal integration of Eq. (2.1) with respect to η with fulfilment of the boundary condition $v_{Z}^{0}(0)=1$ we obtain

$$
\begin{gather*}
v_{z}^{\circ}=1+\alpha F_{3}(\eta)+\beta F_{5}(\eta), \quad \beta=\frac{r_{w^{2} \rho_{0}}^{\mu_{0}}}{\frac{d v_{20}}{d z}} \\
F_{3}(\eta)=\int_{0}^{\eta} \frac{\eta d \eta}{\mu^{\circ}}, \quad F_{3}(\eta)=\int_{0}^{\eta} \frac{E_{4}(\eta) d \eta}{\mu^{0} \eta} \\
F_{4}(\eta)=\int_{0}^{\eta} \rho^{0}\left(v_{z}^{0}\right)^{2} \eta d \eta, \quad \rho^{0}=\frac{\rho}{\rho_{0}} \tag{2.2}
\end{gather*}
$$

We reglect the variation of the integrals F_{3} and F_{5} with z (this will be justified later). We assume that $\rho_{0} v_{z 0}=$ const. When $\eta=1$ we have $\mathrm{v}_{\mathrm{Z}}^{\circ}=0$, and Eq. (2.2) gives

$$
\begin{equation*}
1+\alpha F_{3}(1)+\beta F_{5}(1)=0 \tag{2.3}
\end{equation*}
$$

Neglecting the temperature variation, we can regard the density as proportional to the pressure, since the molecular weight of the gas does not depend greatiy on the pressure. Hence,

$$
\begin{equation*}
\rho_{01} / \rho_{0}=v_{20} / v_{z 01}=1 / p^{\circ}, \quad p^{\circ}=p / p_{1} \tag{2.4}
\end{equation*}
$$

Using (2.4), we get Eq. (2.3) in the form

$$
\begin{gather*}
k_{1} p^{\circ} d p^{\circ}-d p^{\circ} / p^{\circ}+4 k_{2} z^{\circ}=0, \\
k_{1}=\frac{p_{1} F_{3}(1)}{2 \rho_{01} v_{z 01}^{2} F_{5}(1)}, \quad k_{2}=\frac{1}{R F_{5}(1)}, \\
R=\frac{2 r_{w \rho_{01}} v_{z 01}}{\mu_{01}}, \quad z^{\circ}=\frac{z}{2 r_{w}} . \tag{2.5}
\end{gather*}
$$

Table 1

$10^{-5} p / 1.04325, \mathrm{~N} / \mathrm{m}^{2}$		1	2	5	10	20	50	100
Initial Values	s_{0}	2554	2275	2032	1893	1787	1674	1598
	σ_{0}	120.2	103.5	85.11	73.28	57.54	46.77	36.73
	s_{d}	0.3560	0.3800	0.3925	0.3930	0.3890	0.3827	0.3810
	s_{w}^{0}	0.0094	0.0405	0.0118	0.0127	0.0135	0.0143	0.0150
	$E r_{\text {w }}$	20.2	21.2	22.8	24.1	25.6	27.9	30.0
	I / r_{w}	458	375	305	269	237	207	189
	$10^{-3} E I$	9.25	7.96	6.95	6.48	6.11	5.76	5.62
Final Values	η_{d}	0.548	0.518	0.500	0.498	0.502	0.511	0.519
	$E r_{w}$	15.9	17.6	20.3	22.9	25.7	29.9	33.5
	I / r_{w}	732	538	380	298	243	190	165
	$10^{-3} E I$	11.62	9.30	7.71	6.90	6.30	5.78	5.55
	η_{d}	0.648	0.567	0.533	0.518	0.510	0.511	0.517

The values of α and β, in view of (2.5), will be

$$
\alpha=-\frac{k_{1}\left(p^{\circ}\right)^{2}}{\left[k_{1}\left(p^{\circ}\right)^{2}-1\right] F_{3}(1)}, \quad \beta=\frac{1}{\left[k_{1}\left(p^{\circ}\right)^{2}-1\right] F_{5}(1)} \cdot(2.6)
$$

The values of $\mathrm{F}_{3}(1)$ and $\mathrm{F}_{5}(1)$ are of the same order. In particular, when $\rho^{\circ}=\mu^{\circ}=1$ we will have $\mathrm{d} \Lambda / \mathrm{d} z=0$ and then we will obtain a

Poiseuille flow, for which, as is known [4], $\mathrm{dp} / \mathrm{dz}=$ const and $\mathrm{v}_{\mathrm{Z}}^{\circ}=$ $=1-\eta^{2}$.

In this case $F_{3}(1) / F_{5}(1) \approx 3.3$.
It is clear from (2.6) that at sufficiently large k_{1} we can actually ignore the terms in Eqs. (1) and (2.1)-(2.3) which are due to the longitudinal velocity gradient.

We can estimate the variation of the pressure with z by integrating Eq. (2.5). We can either completely discard the second term, or replace $\ln \mathrm{p}^{\circ}$ by $-\left(1-\mathrm{p}^{\circ}\right)$. In the latter case we obtain

$$
\begin{equation*}
p^{\circ}=\left[1+\sqrt{1+k_{1}\left(k_{1}-2-8 k_{9} z^{\circ}\right)}\right] k_{1}^{-1} \tag{2.7}
\end{equation*}
$$

Hence, it is clear that at sufficiently large k_{1} and relatively small z° the pressure along the tube will not decrease significantly. In consequence of (2.4) the axial velocity will also increase insignificantly. This, together with the previously mentioned smallness of the longitudinal variation of the pressure, justifies the assumption made in the derivation of Eq. (2.2) that the integrals F_{3} and F_{5} are independent of z. On substituting the values of v_{Z} from (2.2) in Eq. (1.3) we obtain

$$
\begin{gather*}
\gamma=F_{\mathrm{B}}(1)+\alpha F_{5}(1)+\beta F_{8}(1) \\
\gamma=\frac{G}{2 \pi \rho_{0} v_{z 0} r_{w}^{2}}, \quad F_{6}(1)=\int_{0}^{1} \rho^{0} \eta d \eta, \quad F_{7}(1)=\int_{0}^{1} \rho^{0} F_{3}(\eta) \eta d \eta \\
F_{8}(1)=\int_{0}^{1} \rho^{0} F_{5}(\eta) \eta d \eta \tag{2.8}
\end{gather*}
$$

Since on the basis of (2.2)

$$
\tau_{w}=-\mu_{w}\left(\partial v_{z} / \partial r\right)_{w}=-\mu_{0} v_{z 0} r_{w}^{-1}\left[\alpha+\beta F_{4}(1)\right]
$$

then the friction drag coefficient

$$
\zeta=8 r_{w} / \rho_{0} v_{z 0}^{2}=-8 \mu_{0}\left[\alpha+\beta F_{4}(1)\right] / r_{w}{ }^{\rho_{0}} v_{z 0}
$$

In view of (2.8), we obtain

$$
\begin{equation*}
\delta=-\gamma\left[a+\beta F_{4}(1)\right] \quad\left(\delta=G \zeta / 16 \pi r_{w} \mu_{01}\right) \tag{2.9}
\end{equation*}
$$

The start of stabilized electric-arc heating, i.e., the case $\mathrm{p}^{\circ}=1$, is of greatest interest. In such a case, on the basis of (2.6)

$$
\begin{equation*}
\alpha=-k_{1} /\left(k_{1}-1\right) F_{3}(1), \quad \beta=1 /\left(k_{1}-1\right) F_{5}(1) \tag{2.10}
\end{equation*}
$$

At large k_{1} the values of α, γ, δ will be given by the formulas

$$
\alpha=-\frac{1}{F_{3}(1)}, \quad \gamma=\frac{F_{3}(1) F_{6}(1)-F_{7}(1)}{F_{3}(1)}, \quad \delta=-\alpha \Upsilon \cdot(2.11)
$$

A common characteristic of electric-arc heating is the mean bulk enthalpy. Proceeding from the expression

$$
\langle h\rangle=\int_{0}^{r_{w}} \rho v_{z} h r d r\left(\int_{0}^{r_{w}} \rho v_{z} r d r\right)^{-1}
$$

we arrive at the following formula for $\left\langle h^{\circ}\right\rangle=\langle h\rangle / h_{0}$:

$$
\begin{equation*}
\left\langle h^{0}\right\rangle=\frac{1}{\gamma} \int_{0}^{1} \rho^{0} v_{z}^{0} h^{o} \eta d \eta \tag{2.12}
\end{equation*}
$$

3. In application to a particular case we consider the assumption

$$
\begin{equation*}
\rho v_{x}=\text { const } \tag{3.1}
\end{equation*}
$$

It follows from Eq. (1.3) that $\gamma=1 / 2$. In view of (3.1) and the fact that the value of ρ_{W} is bounded, the condition $v_{Z}{ }^{\circ}(1)=0$ will not satisfied; instead, according to (3.1), we obtain

$$
v_{z}^{\circ}(1)=1 / \rho_{w}{ }^{\circ}
$$

Hence, the right side of the equation, similar to $(2,3)$, will be equal to $1 / \rho_{W}^{\circ}$.

At large k_{1} the terms with β can be neglected and then

$$
\alpha=-\left(\rho_{w}^{\circ}-1\right) / \rho_{w}^{\circ} F_{3}(1), \quad \delta=-1 / 2 \alpha
$$

In this case the mean bulk enthalpy can be expressed on the basis of (2.12),

$$
\begin{equation*}
\left\langle h^{\circ}\right\rangle=2 \int_{0}^{1} h^{\circ} \eta d \eta \tag{3.2}
\end{equation*}
$$

4. We carried out calculations for air with an axial temperature of $6000^{\circ} \mathrm{K}$ and pressures $1-100$ atmospheres. We used known data for the temperature and pressure dependences of the thermal conductivity and viscosity [5], the electrical conductivity [6], and the enthalpy and density [7].

As an initial approximation for a we took the approximating expression $\sigma^{2}=1-6\left(\eta / \eta_{\mathrm{d}}\right)^{2}+8\left(\eta / \eta_{\mathrm{d}}\right)^{3}-3\left(\eta / \eta_{\mathrm{d}}\right)^{4}$, which satisfied the conditions

$$
\begin{gathered}
\sigma^{\circ}(0)=1, \quad \sigma^{\circ}\left(\eta_{d}\right)=0 \\
\left(d \sigma^{\circ} / d \eta\right)_{\eta=0}=\left(d \sigma^{\circ} / d \eta\right)_{n=n_{d}}=\left(d^{2} \sigma^{\circ} / d \eta^{2}\right)_{n=\eta_{d}}=0 .
\end{gathered}
$$

This approximation enable us to determine the functions $F_{1}(\eta)$ and $\mathrm{F}_{2}(\eta)$ in final form, to calculate the characteristics $E r_{W}, I / r_{W}$,

Table 2

| $10^{-5} p i 1.01325, \mathrm{~N} / \mathrm{m}^{2}$ | 1 | 2 | 5 | 10 | 20 | 50 | 109 |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |

EI, η_{d}, and s° in an initial approximation from formulas (1.5), (1.6), (1.9), (1.8), and (1.4) and to determine $\sigma^{\circ}=\sigma^{\circ}\left(s^{\circ}\right)$ in a first approximation. We then carried out a numerical calculation of these functions and characteristics in a first approximation. In a similar way we found higher-order approximations. The distribution $s^{\circ}=s^{\circ}(\eta, \mathrm{p})$ for the nonconducting region was calculated from formula (1.7). Table 1 gives some of the data required for the calculations.

Calculations of the indicated characteristics show that it is sufficient to take the second approximation. In the calculations, however, approximations to the fourth order were made. The initial and final values of $E r_{W}, I / r_{W}, E I$, and η_{d} are shown in Table 1. Figure 1 shows the enthalpy profiles $h^{\circ}=h^{\circ}(7, p)$ found from the distributions $s^{\circ}=s^{\circ}(\eta, p)$.

We obtained corresponding distributions $p^{\circ}=\rho^{\circ}(\eta, p), \mu^{\circ}=\mu^{\circ}(\eta, p)$ which enabled us to determined numerically the functions $F_{3}(\eta, p)$, $\mathrm{F}_{6}(\eta, \mathrm{p})$, and $\mathrm{F}_{7}(\eta, \mathrm{p})$, and to calculate the gasdynamic characteristics α, γ, and δ in a first approximation ($\beta=0$) from formulas (2.11). We also determined the velociry profiles $\mathrm{V}_{\mathrm{Z}}^{\circ}=\mathrm{v}_{Z}^{\circ}(\eta, \mathrm{p})$ from formula (2.2) $(\beta=0)$. The values of α, γ, and δ are given in Table 2. We found that the velocity profile is independent of the pressure to an accuracy of two to three decimal places. Figure 1 shows v_{Z}° as a function of η.

The obtained values of γ show that at constant flow rate G and radius r_{W} the product $\rho_{0,} V_{Z 0}$ decreases slightly with pressure increase. Since the density is almost proportional to the pressure, the velocity $\mathrm{v}_{\mathrm{z} 0}$ will decrease rapidly, and the coefficient k_{1} will increase rapidly, with pressure increase. Thus when $G=$ const and $r_{W}=$ const, β will presumably approach zero rapidly with pressure increase; this is confirmed by calculation (Table 2).

We next calculated the functions $F_{4}(\eta, p)$ and $F_{5}\left(\eta_{i}, p\right)$ and the parameters α, β, γ, and δ in a second approximation from formulas (2.10), (2.8), and (2.9). The results are also given in Table 2.

Although when $G=$ const and $r_{W}=$ const the value of $\rho_{0} v_{Z 0} d e-$ creases slightly with pressure increase (in the considered pressure range the decrease does not exceed 12%), we assumed in the calculations of the coefficients k_{1} that $\rho_{0} v_{Z 0}=$ const $=21.59$. This value is obtained when $T_{0}=6000^{\circ} \mathrm{K}, \mathrm{p}=1.01325 .10^{5} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{v}_{\mathrm{Z} 0}=$ $=482 \mathrm{~m} / \mathrm{sec}$ (which corresponds to $M_{0}=0.3$, at which the kinetic energy can still be neglected in comparison with the enthalpy).

A comparison of the results of calculation in the first and second approximations shows that for the considered conditions the effect of the variation of $v_{Z 0}$ with z is insignificant and is practically absent at pressures $p \geq 2 \cdot 1.01325 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. Since for the first two pressures in Table 2 the values of α in the second approximation are larger, the corresponding velocity profiles $v_{Z}^{\circ}=v_{Z}^{\circ}(\eta, p)$ (with β taken into
account) are practically the same as the profiles obtained in the first approximation $(\beta=0)$. For comparison Table 2 gives the values of α and $\beta(\beta=0)$ on the assumption that $\rho v_{2}=$ const. As we observed, in this case $\gamma=0.5$, irrespective of the pressure. These values of α, γ, δ differ from the values in the first approximation by $9.7-$ $-10.9 \%, 6.9-20.5 \%$, and $15.2-29.0 \%$, respectively, and the difference increases with pressure increase. Table 2 also gives the values of the dimensionless mass mean enthalpy $\left\langle h^{\circ}\right\rangle$ calculated from formulas (2.12) and (3.2). The difference between corresponding values is $1.9-4.5 \%$.

In conclusion we evaluate the changes in pressure for $r_{W}=0.001 \mathrm{~m}$, $p_{1}=1.01325 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, and $T_{0}=6000^{\circ} \mathrm{K}$. In this case $\mathrm{k}_{1}=11.2$ and $\mathrm{k}_{2}=0.00985$. Calculation from formula (2.7) with $\mathrm{z}^{\circ}=5$ gives $\mathrm{p}^{\circ}=0.985$.

The author thanks M. P. Levin for assistance in the calculations.

REFERENCES

1. G. Schmitz, H. J. Patt. and J. Uhlenbusch, "Eigenschaften und parameterabhängigkeit der Temperaturverteilung und der Charaktexistik eines Zylindersymmetrisch Stickstoffbogens," Z. Phys., vol. 173 no. 5, 1963.
2. V. N. Verlutskii, A. T. Onufriev, and V. G. Sevast'yanenko, "Calculation of a wall-stabilized electric arc in argon with due regard to radiative energy transfer," PMTE [Journal of Applied Mechanics and Technical Physics], no. 4, 1965.
3. 4. I. Suksov, "An approximate relationship for the heat flux to the walls in electric-archeating in a round tube," PMTF [Journal of Applied Mechanics and Technical Physics], no. 4, 1966.
1. N. E. Kochin, I. A. Kibel, and N. V. Roze, Theoretical Hydromechanics [ín Russian], Chap. 2, Fizmatgiz, 1963.
2. R. M. Sevast'yanov and M. D. Zdunkevich, Tables of Thermophysical Properties of Air and Nitrogen in the Temperature Range from 100 to $5000-15000^{\circ} \mathrm{K}$ [in Russian], Gosenergoizdat, 1964.
3. J. R. Viegas, and T. C. Peng, "Electrical conductivity of ionized air in thermodynamic equillibrium," ARS Journal, vol. 31, no. 5, 1961.
4. A. S. Predvoditelev, E. V. Stupochenko, A. S. Pleshanov, E. V. Samuilov, and I. B. Rozhdestyenskii, Tables of Themodynamic Functions of Air (for Temperatures from $200-6000^{\circ} \mathrm{K}$ and Pressures from 0.00001-100 Atmospheres) [in Russian], VTs AN SSSR, 1962.
